PLC的选用准则

作者:中国工控网 来源:中国工控网 发布时间:2011年12月07日
 

 

第六章 可编程控制器控制系统的设计
   
在对PLC的基本工作原理和编程技术有了一定的了解之后,我们就可以用PLC来构成一个实际的控制系统。PLC控制系统的设计主要包括系统设计、程序设计、施工设计和安装调试等四方面的内容。本章主要介绍PLC控制系统的设计步骤和内容、设计与实施过程中应该注意的事项,使读者初步掌握PLC控制系统的设计方法。要达到能顺利地完成PLC控制系统的设计,更重要的是需要不断地实践。
 
第一节 PLC控制系统设计的基本原则与内容
 
    一、PLC控制系统设计的基本原则
 任何一种控制系统都是为了实现被控对象的工艺要求,以提高生产效率和产品质量。因此,在设计PLC控制系统时,应遵循以下基本原则:
 1. 最大限度地满足被控对象的控制要求
充分发挥PLC的功能,最大限度地满足被控对象的控制要求,是设计PLC控制系统的首要前提,这也是设计中最重要的一条原则。这就要求设计人员在设计前就要深入现场进行调查研究,收集控制现场的资料,收集相关先进的国内、国外资料。同时要注意和现场的工程管理人员、工程技术人员、现场操作人员紧密配合,拟定控制方案,共同解决设计中的重点问题和疑难问题。
2. 保证PLC控制系统安全可靠
保证PLC控制系统能够长期安全、可靠、稳定运行,是设计控制系统的重要原则。这就要求设计者在系统设计、元器件选择、软件编程上要全面考虑,以确保控制系统安全可靠。例如:应该保证PLC程序不仅在正常条件下运行,而且在非正常情况下(如突然掉电再上电、按钮按错等),也能正常工作。
3. 力求简单、经济、使用及维修方便
 一个新的控制工程固然能提高产品的质量和数量,带来巨大的经济效益和社会效益,但新工程的投入、技术的培训、设备的维护也将导致运行资金的增加。因此,在满足控制要求的前提下,一方面要注意不断地扩大工程的效益,另一方面也要注意不断地降低工程的成本。这就要求设计者不仅应该使控制系统简单、经济,而且要使控制系统的使用和维护方便、成本低,不宜盲目追求自动化和高指标。
 4. 适应发展的需要
    由于技术的不断发展,控制系统的要求也将会不断地提高,设计时要适当考虑到今后控制系统发展和完善的需要。这就要求在选择PLC、输入/输出模块、I/O点数和内存容量时,要适当留有裕量,以满足今后生产的发展和工艺的改进。
 二、PLC控制系统设计与调试的步骤:
 如图6-1所示为PLC控制系统设计与调试的一般步骤。
 
 
                       
图6-1 PLC控制系统设计与调试的一般步骤
(一)分析被控对象并提出控制要求
详细分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,提出被控对象对PLC控制系统的控制要求,确定控制方案,拟定设计任务书。
(二)确定输入/输出设备
 根据系统的控制要求,确定系统所需的全部输入设备(如:按纽、位置开关、转换开关及各种传感器等)和输出设备(如:接触器、电磁阀、信号指示灯及其它执行器等),从而确定与PLC有关的输入/输出设备,以确定PLC的I/O点数。
 (三)选择PLC
PLC选择包括对PLC的机型、容量、I/O模块、电源等的选择,详见本章第二节。
(四)分配I/O点并设计PLC外围硬件线路
1.分配I/O点
画出PLC的I/O点与输入/输出设备的连接图或对应关系表,该部分也可在第2步中进行。
2.设计PLC外围硬件线路
画出系统其它部分的电气线路图,包括主电路和未进入PLC的控制电路等。
由PLC的I/O连接图和PLC外围电气线路图组成系统的电气原理图。到此为止系统的硬件电气线路已经确定。
 (五)程序设计
1. 程序设计
根据系统的控制要求,采用合适的设计方法(见第六章)来设计PLC程序。程序要以满足系统控制要求为主线,逐一编写实现各控制功能或各子任务的程序,逐步完善系统指定的功能。除此之外,程序通常还应包括以下内容:
1)初始化程序。在PLC上电后,一般都要做一些初始化的操作,为启动作必要的准备,避免系统发生误动作。初始化程序的主要内容有:对某些数据区、计数器等进行清零,对某些数据区所需数据进行恢复,对某些继电器进行置位或复位,对某些初始状态进行显示等等。
2)检测、故障诊断和显示等程序。这些程序相对独立,一般在程序设计基本完成时再添加。
3)保护和连锁程序。保护和连锁是程序中不可缺少的部分,必须认真加以考虑。它可以避免由于非法操作而引起的控制逻辑混乱,。
2. 程序模拟调试
程序模拟调试的基本思想是,以方便的形式模拟产生现场实际状态,为程序的运行创造必要的环境条件。根据产生现场信号的方式不同,模拟调试有硬件模拟法和软件模拟法两种形式。
1)硬件模拟法是使用一些硬件设备(如用另一台PLC或一些输入器件等)模拟产生现场的信号,并将这些信号以硬接线的方式连到PLC系统的输入端,其时效性较强。
2)软件模拟法是在PLC中另外编写一套模拟程序,模拟提供现场信号,其简单易行,但时效性不易保证。模拟调试过程中,可采用分段调试的方法,并利用编程器的监控功能。
(六)硬件实施
硬件实施方面主要是进行控制柜(台)等硬件的设计及现场施工。主要内容有:
1) 设计控制柜和操作台等部分的电器布置图及安装接线图。
2)设计系统各部分之间的电气互连图。
3)根据施工图纸进行现场接线,并进行详细检查。
由于程序设计与硬件实施可同时进行,因此PLC控制系统的设计周期可大大缩短。 
    (七)联机调试
 联机调试是将通过模拟调试的程序进一步进行在线统调。联机调试过程应循序渐进,从PLC只连接输入设备、再连接输出设备、再接上实际负载等逐步进行调试。如不符合要求,则对硬件和程序作调整。通常只需修改部份程序即可。
全部调试完毕后,交付试运行。经过一段时间运行,如果工作正常、程序不需要修改,应将程序固化到EPROM中,以防程序丢失。
(八)整理和编写技术文件
技术文件包括设计说明书、硬件原理图、安装接线图、电气元件明细表、PLC程序以及使用说明书等。
   
第二节 PLC的选择
 
 随着PLC技术的发展,PLC产品的种类也越来越多。不同型号的PLC,其结构形式、性能、容量、指令系统、编程方式、价格等也各有不同,适用的场合也各有侧重。因此,合理选用PLC,对于提高PLC控制系统的技术经济指标有着重要意义。
PLC的选择主要应从PLC的机型、容量、I/O模块、电源模块、特殊功能模块、通信联网能力等方面加以综合考虑。
一、PLC机型的选择
PLC机型选择的基本原则是在满足功能要求及保证可靠、维护方便的前提下,力争最佳的性能价格比。选择时主要考虑以下几点:
 (一) 合理的结构型式
PLC主要有整体式和模块式两种结构型式。
整体式PLC的每一个I/O点的平均价格比模块式的便宜,且体积相对较小,一般用于系统工艺过程较为固定的小型控制系统中;而模块式PLC的功能扩展灵活方便,在I/O点数、输入点数与输出点数的比例、I/O模块的种类等方面选择余地大,且维修方便,一般于较复杂的控制系统。
(二) 安装方式的选择
 PLC系统的安装方式分为集中式、远程I/O式以及多台PLC联网的分布式。
集中式不需要设置驱动远程I/O硬件,系统反应快、成本低;远程I/O式适用于大型系统,系统的装置分布范围很广,远程I/O可以分散安装在现场装置附近,连线短,但需要增设驱动器和远程I/O电源;多台PLC联网的分布式适用于多台设备分别独立控制,又要相互联系的场合,可以选用小型PLC,但必须要附加通讯模块。
 (三)相应的功能要求
一般小型(低档)PLC具有逻辑运算、定时、计数等功能,对于只需要开关量控制的设备都可满足。
对于以开关量控制为主,带少量模拟量控制的系统,可选用能带A/D和D/A转换单元,具有加减算术运算、数据传送功能的增强型低档PLC。
对于控制较复杂,要求实现PID运算、闭环控制、通信联网等功能,可视控制规模大小及复杂程度,选用中档或高档PLC。但是中、高档PLC价格较贵,一般用于大规模过程控制和集散控制系统等场合。
 (四)响应速度要求
 PLC是为工业自动化设计的通用控制器,不同档次PLC的响应速度一般都能满足其应用范围内的需要。如果要跨范围使用PLC,或者某些功能或信号有特殊的速度要求时,则应该慎重考虑PLC的响应速度,可选用具有高速I/O处理功能的PLC,或选用具有快速响应模块和中断输入模块的PLC等。
 (五)系统可靠性的要求
对于一般系统PLC的可靠性均能满足。对可靠性要求很高的系统,应考虑是否采用冗余系统或热备用系统。
 (六)机型尽量统一
一个企业,应尽量做到PLC的机型统一。主要考虑到以下三方面问题:
1)机型统一,其模块可互为备用,便于备品备件的采购和管理。
2)机型统一,其功能和使用方法类似,有利于技术力量的培训和技术水平的提高。
3)机型统一,其外部设备通用,资源可共享,易于联网通信,配上位计算机后易于形成一个多级分布式控制系统。
二、PLC容量的选择
PLC的容量包括I/O点数和用户存储容量两个方面。
(一)I/O点数的选择
PLC平均的I/O点的价格还比较高,因此应该合理选用PLC的I/O点的数量,在满足控制要求的前提下力争使用的I/O点最少,但必须留有一定的裕量。
通常I/O点数是根据被控对象的输入、输出信号的实际需要,再加上10%~15%的裕量来确定。
 (二) 存储容量的选择
用户程序所需的存储容量大小不仅与PLC系统的功能有关,而且还与功能实现的方法、程序编写水平有关。一个有经验的程序员和一个初学者,在完成同一复杂功能时,其程序量可能相差25%之多,所以对于初学者应该在存储容量估算时多留裕量。
PLC的I/O点数的多少,在很大程序上反映了PLC系统的功能要求,因此可在I/O点数确定的基础上,按下式估算存储容量后,再加20%~30%的裕量。
存储容量(字节)=开关量I/O点数×10 + 模拟量I/O通道数×100
另外,在存储容量选择的同时,注意对存储器的类型的选择。
三、I/O模块的选择
一般I/O模块的价格占PLC价格的一半以上。PLC的I/O模块有开关量I/O模块、模拟量I/O模块及各种特殊功能模块等。不同的I/O模块,其电路及功能也不同,直接影响PLC的应用范围和价格,应当根据实际需要加以选择。
   (一)开关量I/O模块的选择
 1. 开关量输入模块的选择
开关量输入模块是用来接收现场输入设备的开关信号,将信号转换为PLC内部接受的低电压信号,并实现PLC内、外信号的电气隔离。选择时主要应考虑以下几个方面:
1)输入信号的类型及电压等级
开关量输入模块有直流输入、交流输入和交流/直流输入三种类型。选择时主要根据现场输入信号和周围环境因素等。直流输入模块的延迟时间较短,还可以直接与接近开关、光电开关等电子输入设备连接;交流输入模块可靠性好,适合于有油雾、粉尘的恶劣环境下使用。
开关量输入模块的输入信号的电压等级有:直流5V、12V、24V、48V、60V等;交流110V、220V等。选择时主要根据现场输入设备与输入模块之间的距离来考虑。一般5V、12V、24V用于传输距离较近场合,如5V输入模块最远不得超过10米。距离较远的应选用输入电压等级较高的模块。
2)输入接线方式
开关量输入模块主要有汇点式和分组式两种接线方式,如图6-2所示。
 
 
 
图6-2开关量输入模块的接线方式
a)汇点式输入    b)分组式输入
汇点式的开关量输入模块所有输入点共用一个公共端(COM);而分组式的开关量输入模块是将输入点分成若干组,每一组(几个输入点)有一个公共端,各组之间是分隔的。分组式的开关量输入模块价格较汇点式的高,如果输入信号之间不需要分隔,一般选用汇点式的。
3)注意同时接通的输入点数量
对于选用高密度的输入模块(如32点、48点等),应考虑该模块同时接通的点数一般不要超过输入点数的60%。
4)输入门槛电平
为了提高系统的可靠性,必须考虑输入门槛电平的大小。门槛电平越高,抗干扰能力越强,传输距离也越远,具体可参阅PLC说明书。
 2. 开关量输出模块的选择
开关量输出模块是将PLC内部低电压信号转换成驱动外部输出设备的开关信号,并实现PLC内外信号的电气隔离。选择时主要应考虑以下几个方面:
1)输出方式
开关量输出模块有继电器输出、晶闸管输出和晶体管输出三种方式。
继电器输出的价格便宜,既可以用于驱动交流负载,又可用于直流负载,而且适用的电压大小范围较宽、导通压降小,同时承受瞬时过电压和过电流的能力较强,但其属于有触点元件,动作速度较慢(驱动感性负载时,触点动作频率不得超过1HZ)、寿命较短、可靠性较差,只能适用于不频繁通断的场合。
对于频繁通断的负载,应该选用晶闸管输出或晶体管输出,它们属于无触点元件。但晶闸管输出只能用于交流负载,而晶体管输出只能用于直流负载。
2)输出接线方式
开关量输出模块主要有分组式和分隔式两种接线方式,如图6-3所示。
 
 
 
图6-3 开关量输出模块的接线方式
 a)分组式输出   b)分隔式输出
分组式输出是几个输出点为一组,一组有一个公共端,各组之间是分隔的,可分别用于驱动不同电源的外部输出设备;分隔式输出是每一个输出点就有一个公共端,各输出点之间相互隔离。选择时主要根据PLC输出设备的电源类型和电压等级的多少而定。一般整体式PLC既有分组式输出,也有分隔式输出。
 3)驱动能力
  开关量输出模块的输出电流(驱动能力)必须大于PLC外接输出设备的额定电流。用户应根据实际输出设备的电流大小来选择输出模块的输出电流。如果实际输出设备的电流较大,输出模块无法直接驱动,可增加中间放大环节。
  4)注意同时接通的输出点数量
 选择开关量输出模块时,还应考虑能同时接通的输出点数量。同时接通输出设备的累计电流值必须小于公共端所允许通过的电流值,如一个220V/2A的8点输出模块,每个输出点可承受2A的电流,但输出公共端允许通过的电流并不是16A(8×2A),通常要比此值小得多。一般来讲,同时接通的点数不要超出同一公共端输出点数的60%。
  5)输出的最大电流与负载类型、环境温度等因素有关
开关量输出模块的技术指标,它与不同的负载类型密切相关,特别是输出的最大电流。另外,晶闸管的最大输出电流随环境温度升高会降低,在实际使用中也应注意。
(二)模拟量I/O模块的选择
 模拟量I/O模块的主要功能是数据转换,并与PLC内部总线相连,同时为了安全也有电气隔离功能。模拟量输入(A/D)模块是将现场由传感器检测而产生的连续的模拟量信号转换成PLC内部可接受的数字量;模拟量输出(D/A)模块是将PLC内部的数字量转换为模拟量信号输出。
 典型模拟量I/O模块的量程为-10V~+10V、0~+10V、4~20mA等,可根据实际需要选用,同时还应考虑其分辨率和转换精度等因素。
 一些PLC制造厂家还提供特殊模拟量输入模块,可用来直接接收低电平信号(如RTD、热电偶等信号)。
(三)特殊功能模块的选择
 目前,PLC制造厂家相继推出了一些具有特殊功能的I/O模块,有的还推出了自带CPU的智能型I/O模块,如高速计数器、凸轮模拟器、位置控制模块、PID控制模块、通信模块等。
四、电源模块及其它外设的选择
   1.电源模块的选择
  电源模块选择仅对于模块式结构的PLC而言,对于整体式PLC不存在电源的选择。
电源模块的选择主要考虑电源输出额定电流和电源输入电压。电源模块的输出额定电流必须大于CPU模块、I/O模块和其它特殊模块等消耗电流的总和,同时还应考虑今后I/O模块的扩展等因素;电源输入电压一般根据现场的实际需要而定。
  2.编程器的选择
  对于小型控制系统或不需要在线编程的系统,一般选用价格便宜的简易编程器。对于由中、高档PLC构成的复杂系统或需要在线编程的PLC系统,可以选配功能强、编程方便的智能编程器,但智能编程器价格较贵。如果有现成的个人计算机,也可以选用PLC的编程软件,在个人计算机上实现编程器的功能。
  3.写入器的选择
为了防止由于干扰或锂电池电压不足等原因破坏RAM中的用户程序,可选用EPROM写入器,通过它将用户程序固化在EPROM中。有些PLC或其编程器本身就具有EPROM 写入的功能。
            
第三节 PLC与输入输出设备的连接
 
PLC常见的输入设备有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。
一、             PLC与常用输入设备的连接
1.    PLC与主令电器类设备的连接
如图6-4所示是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。图中的PLC为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。若是分组式输入,也可参照图6-4的方法进行分组连接。
 
 
 
6-4 PLC与主令电器类输入设备的连接
2.    PLC与拨码开关的连接
如果PLC控制系统中的某些数据需要经常修改,可使用多位拨码开关与PLC连接,在PLC外部进行数据设定。如图6-5所示为一位拨码开关的示意图,一位拨码开关能输入一位十进制数的0~9,或一位十六进制数的0~F。
 
 
 
图6-5 一位拨码开关的示意图
如图6-6所示4位拨码开关组装在一起,把各位拨码开关的COM端连在一起,接在PLC输入侧的COM端子上。每位拨码开关的4条数据线按一定顺序接在PLC的4个输入点上。由图可见,使用拨码开关要占用许多PLC 输入点,所以不是十分必要的场合,一般不要采用这种方法。
 
 
 
图6-6   4位拨码开关与PLC的连接
    输入采用拨码开关时,可采用下节将介绍的分组输入法或矩阵输入法,以提高PLC输入点的利用率。
       3. PLC与旋转编码器的连接
旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。
如图6-7所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC的输入端连接,连接时要注意PLC输入的响应时间。有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。
 
 
 
图6-7 旋转编码器与PLC的连接
    4.PLC与传感器类设备的连接
    传感器的种类很多,其输出方式也各不相同。当采用接近开关、光电开关等两线式传感器时,由于传感器的漏电流较大,可能出现错误的输入信号而导致PLC的误动作,此时可在PLC输入端并联旁路电阻R,如图6-8所示。当漏电流不足lmA时可以不考虑其影响。
 
 
 
图6-8 PLC与两线式传感器的连接
旁路电阻R的估算公式如下:
 
式中:I为传感器的漏电流(mA),UOFF为PLC输入电压低电平的上限值(V),RC为PLC的输入阻抗(KΩ),RC的值根据输入点不同有差异。
    二、PLC与常用输出设备的连接
1.    PLC与输出设备的一般连接方法
PLC与输出设备连接时,不同组(不同公共端)的输出点,其对应输出设备(负载)的电压类型、等级可以不同,但同组(相同公共端)的输出点,其电压类型和等级应该相同。要根据输出设备电压的类型和等级来决定是否分组连接。如图6-9所示以FX2N为例说明PLC与输出设备的连接方法。图中接法是输出设备具有相同电源的情况,所以各组的公共端连在一起,否则要分组连接。图中只画出Y0-Y7输出点与输出设备的连接,其它输出点的连接方法相似。
 
 
 
图6-9 PLC与输出设备的连接
2.    PLC与感性输出设备的连接
PLC的输出端经常连接的是感性输出设备(感性负载),为了抑制感性电路断开时产生的电压使PLC内部输出元件造成损坏。因此当PLC与感性输出设备连接时,如果是直流感性负载,应在其两端并联续流二极管;如果是交流感性负载,应在其两端并联阻容吸收电路。如图6-10所示。
 
 
 
图6-10 PLC与感性输出设备的连接
图中,续流二极管可选用额定电流为1A、额定电压大于电源电压的3倍;电阻值可取50~120Ω,电容值可取0.1~0.47μF,电容的额定电压应大于电源的峰值电压。接线时要注意续流二极管的极性。
3.PLC与七段LED显示器的连接
PLC可直接用开关量输出与七段LED显示器的连接,但如果PLC控制的是多位LED七段显示器,所需的输出点是很多的。
如图6-11所示电路中,采用具有锁存、译码、驱动功能的芯片CD4513驱动共阴极LED七段显示器,两只CD4513的数据输入端A~D共用PLC的4个输出瑞,其中A为最低位,D为最高位。LE是锁存使能输入端,在LE信号的上升沿将数据输入端输入的BCD数锁存在片内的寄存器中,并将该数译码后显示出来。如果输入的不是十进制数,显示器熄灭。LE为高电平时,显示的数不受数据输入信号的影响。显然,N个显示器占用的输出点数为P=4+N。
 
 
 
图6-11 PLC与两位七段LED显示器的连接
如果PLC使用继电器输出模块,应在与CD4513相连的PLC各输出端接一下拉电阻,以避免在输出继电器的触点断开时CD4513的输入端悬空。PLC输出继电器的状态变化时,其触点可能抖动,因此应先送数据输出信号,待该信号稳定后,再用LE信号的上升沿将数据锁存进CD4513。
4. PLC与输出设备连接的其它注意事项
1)除了PLC输入和输出共用同一电源外,输入公共端与输出公共端一般不能接在一起;
2)PLC的晶体管和晶闸管型输出都有较大的漏电流,尤其是晶闸管输出,将可能会出现输出设备的误动作。所以要在负载两端并联一个旁路电阻,旁路电阻R的阻值估算可由下式确定:
                                                                                   其中UON是负载的开启电压(V),I是输出漏电流(mA)。
 
第四节 减少I/O点数的措施
 
PLC在实际应用中常碰到这样两个问题:一是PLC的I/O点数不够,需要扩展,然而增加I/O点数将提高成本;二是已选定的PLC可扩展的I/O点数有限,无法再增加。因此,在满足系统控制要求的前提下,合理使用I/O点数,尽量减少所需的I/O点数是很有意义的。下面将介绍几种常用的减少I/O点数的措施。
  一、减少输入点数的措施
 1.分组输入
  一般系统都存在多种工作方式,但系统同时又只选择其中一种工作方式运行,也就是说,各种工作方式的程序不可能同时执行。因此,可将系统输入信号按其对应的工作方式不同分成若干组,PLC运行时只会用到其中的一组信号,所以各组输入可共用PLC的输入点,这样就使所需的输入点减少。
  如图6-12所示,系统有“自动”和“手动”两种工作方式,其中S1~S8为自动工作方式用到的输入信号、Q1~Q8为手动工作方式用到的输入信号。两组输入信号共用PLC的输入点X0~X7,如S1与Q1共用输入点X0。用“工作方式”选择开关SA来切换“自动”和“手动”信号的输入电路,并通过X10让PLC识别是“自动”,还是“手动”,从而执行自动程序或手动程序。
 
 
 
               图6-12 分组输入
图中的二极管是为了防止出现寄生回路,产生错误输入信号而设置的。例如当SA扳到“自动”位置,若S1闭合,S2断开,虽然Q1、Q2闭合,也应该是X0有输入,而X1无输入,但如果无二极管隔离,则电流从X0流出,经Q2→Q1→S1→COM形成寄生回路,从而使得X1错误地接通。因此,必须串入二极管切断寄生回路,避免错误输入信号的产生。
  2.矩阵输入
如图6-13所示为3×3矩阵输入电路,用PLC的三个输出点Y0、Y1、Y2和三个输入点X0、X1、X2来实现9个开关量输入设备的输入。图中,输出Y0、Y1、Y2的公共端COM与输入继电器的公共端COM连在一起。当Y0、Y1、Y2轮流导通,则输入端X0、X1、X2也轮流得到不同的三组输入设备的状态,即Y0接通时读入Q1、Q2、Q3的通断状态, Y1接通时读入Q4、Q5、Q6的通断状态,Y2接通时读入Q7、Q8、Q9的通断状态。
  当Y0接通时,如果Q1闭合,则电流从X0端流出,经过D1→Q1→Y0端,再经过Y0的触点,从输出公共端COM流出,最后流回输入COM端,从而使输入继电器X0接通。在梯形图程序中应该用Y0常开触点和X0常开触点的串联,来表示Q1提供的输入信号。
  图中二极管也是起切断寄生回路的作用。
 
 
 
                图6-13  矩阵输入
采用矩阵输入方法除了要按图6-12的硬件连接外,还必须编写对应的PLC程序。由于矩阵输入的信号是分时被读入PLC,所以读入的输入信号为一系列断续的脉冲信号,在使用时应注意这个问题。另外,应保证输入信号的宽度要大于Y0、Y1、Y2轮流导通一遍的时间,否则可能会丢失输入信号。
   3.组合输入
  对于不会同时接通的输入信号,可采用组合编码的方式输入。如图6-14a所示,三个输入信号Q1、Q2、Q3只要占用两个输入点,再通过如图6-14b所示程序的译码,又还原成与Q1、Q2、Q3对应的M0、M1、M2三个信号。采用这种方法应特别注意要保证各输入开关信号不会同时接通。
 
 
 
图6-14 组合输入
a)硬件连接图   b)梯形图程序  
  4.输入设备多功能化
  在传统的继电器电路中,一个主令电器(开关、按钮等)只产生一种功能的信号。而在PLC系统中,可借助于PLC强大的逻辑处理功能,来实现一个输入设备在不同条件下,产生的信号作用不同。下面通过一个简单的例子来说明。
  如图6-15所示的梯形图只用一个按钮通过X0输入去控制输出Y0的通与断。
 
 
 
图6-15 用一个按钮控制的起动、保持、停止电路
图中,当Y0断开时,按下按钮(X0按通),M0得电,使Y0得电并自锁;再按一下按钮,M0得电,由于此时Y0已得电,所以M1也得电,其常闭触点使Y0断开。即按一下按钮,X0接通一下,Y0得电;再按一下按钮,X0又接通下,Y0失电。改变了传统继电器控制中要用两个按钮(起动按钮和停止按钮)的作法,从而减少了PLC的输入点数。
  同样道理,我们可以用这种思路来实现一个输入具有三种或三种以上的功能。
  5. 合并输入
  将某些功能相同的开关量输入设备合并输入。如果是几个常闭触点,则串联输入;如果是几个常开触点,则并联输入。因此,几个输入设备就可共用PLC的一个输入点。
 6.某些输入设备可不进PLC
  系统中有些输入信号功能简单、涉及面很窄,如某些手动按钮、电动机过载保护的热继电器触点等,有时就没有必要作为PLC的输入,将它们放在外部电路中同样可以满足要求,如图6-16所示。
 
 

    

 

            图6-16 输入信号设在PLC外部
二、减少输出点数的措施
 1.矩阵输出
  图6-17中采用8个输出组成4×4矩阵,可接16个输出设备(负载)。要使某个负载接通工作,只要控制它所在的行与列对应的输出继电器接通即可,例如:要使负载KM1得电工作,必须控制Y0和Y4输出接通。
 
 
 
图6-17 矩阵输出
  应该特别注意:当只有某一行对应的输出继电器接通,各列对应的输出继电器才可任意接通,或者当只有某一列对应的输出继电器接通,各行对应的输出继电器才可任意接通,否则将会出现错误接通负载。因此,采用矩阵输出时,必须要将同一时间段接通的负载安排在同一行或同一列中,否则无法控制。
 2.分组输出
  当两组输出设备或负载不会同时工作,可通过外部转换开关或通过受PLC控制的电器触点进行切换,所以PLC的每个输出点可以控制两个不同时工作的负载。如图6-18所示,KM1、KM3、KM5与KM2、KM4、KM6两组不会同时接通,用转换开关SA进行切换。
 
 
 
图6-18 分组输出
  3.并联输出
 当两个通断状态完全相同的负载,可并联后共用PLC的一个输出点。但要注意PLC输出点同时驱动多个负载时,应考虑PLC输出点的驱动能力是否足够。
  4. 输出设备多功能化
  利用PLC的逻辑处理功能,一个输出设备可实现多种用途。例如在继电器系统中,一个指示灯指示一种状态,而在PLC系统中,很容易实现用一个输出点控制指示灯的常亮和闪烁,这样一个指示灯就可指示两种状态,既节省了指示灯,又减少了输出点数。
  5.某些输出设备可不进PLC
  系统中某些相对独立、比较简单的控制部分,可直接采用PLC外部硬件电路实现控制。
以上一些常用的减少I/0点数的措施,仅供读者参考,实际应用中应该根据具体情况,灵活使用。同时应该注意不要过份去减少PLC的I/0点数,而使外部附加电路变得复杂,从而影响系统的可靠性。
 
第五节 PLC在开关量控制系统中的应用
   
由于PLC的高可靠性及应用的简便性,使其广泛应用于各种生产机械和生产过程的自动控制中,特别是在开关量控制系统中的应用,更显出它的优越性。本节通过PLC在机械手中的应用实例,来说明PLC在开关量控制系统中的应用设计。
[1]一、机械手及其控制要求
  如图6-19所示是一台工件传送的气动机械手的动作示意图,其作用是将工件从A点传递到B点。气动机械手的升降和左右移行作分别由两个具有双线圈的两位电磁阀驱动气缸来完成,其中上升与下降对应电磁阀的线圈分别为YV1与YV2,左行、右行对应电磁阀的线圈分别为YV3与YV4。一旦电磁阀线圈通电,就一直保持现有的动作,直到相对的另一线圈通电为止。气动机械手的夹紧、松开的动作由只有一个线圈的两位电磁阀驱动的气缸完成,线圈(YV5)断电夹住工件,线圈(YV5)通电,松开工件,以防止停电时的工件跌落。机械手的工作臂都设有上、下限位和左、右限位的位置开关SQ1、SQ2和SQ3、SQ4,夹持装置不带限位开关,它是通过一定的延时来表示其夹持动作的完成。机械手在最上面、最左边且除松开的电磁线圈(YV5)通电外其它线圈全部断电的状态为机械手的原位。
    
 
 
图6-19 机械手示意图
   机械手的操作面板分布情况如图6-20所示,机械手具有手动、单步、单周期、连续和回原位五种工作方式,用开关SA进行选择。手动工作方式时,用各操作按钮(SB5、SB6、SB7、SB8、SB9、SB10、SB11)来点动执行相应的各动作;单步工作方式时,每按一次起动按钮(SB3),向前执行一步动作;单周期工作方式时,机械手在原位,按下起动按钮SB3,自动地执行一个工作周期的动作,最后返回原位(如果在动作过程中按下停止按钮SB4,机械手停在该工序上,再按下起动按钮SB3,则又从该工序继续工作,最后停在原位);连续工作方式时,机械手在原位,按下起动按钮(SB3),机械手就连续重复进行工作(如果按下停止按钮SB4,机械手运行到原位后停止);返回原位工作方式时时,按下“回原位”按钮SB11,机械手自动回到原位状态。
 
 
 
图6-20 机械手操作面板示意图
二、PLC的I/O分配
  如图6-21所示为PLC的I/O接线图,选用FX2N-48MR的PLC,系统共有18个输入设备和5个输出设备分别占用PLC的18个输入点和5个输出点,请读者考虑是否可以用本章第四节介绍的方法来减少占用PLC的I/O点数。为了保证在紧急情况下(包括PLC发生故障时),能可靠地切断PLC的负载电源,设置了交流接触器KM。在PLC开始运行时按下“电源”按钮SB1,使KM线圈得电并自锁,KM的主触点接通,给输出设备提供电源;出现紧急情况时,按下“急停”按钮SB2,KM触点断开电源。
 
 
 
图6-21 机械手控制系统PLC的I/O接线图
三、PLC程序设计
1.程序的总体结构
  如图6-22所示为机械手系统的PLC梯形图程序的总体结构,将程序分为公用程序、自动程序、手动程序和回原位程序四个部分,其中自动程序包括单步、单周期和连续工作的程序,这是因为它们的工作都是按照同样的顺序进行,所以将它们合在一起编程更加简单。梯形图中使用跳转指令使得自动程序、手动程序和回原位程序不会同时执行。假设选择“手动”方式,则X0为ON、X1为OFF,此时PLC执行完公用程序后,将跳过自动程序到P0处,由于X0常闭触点为断开,故执行“手动程序”,执行到P1处,由于X1常闭触点为闭合,所以又跳过回原位程序到P2处;假设选择分“回原位”方式,则X0为OFF、X1为ON,跳过自动程序和手动程序执行回原位程序;假设选择“单步”或“单周期”或“连续”方式,则X0、X1均为OFF,此时执行完自动程序后,跳过手动程序和回原位程序。
 
 
 
图6-22 机械手系统PLC梯形图的总体结构
2.各部分程序的设计
(1)公用程序 公用程序如图6-23所示,左限位开关X12、上限位开关X10的常开触点和表示机械手松开的Y4的常开触点的串联电路接通时,辅助继电器M0变为ON,表示机械手在原位。
    公用程序用于自动程序和手动程序相互切换的处理,当系统处于手动工作方式时,必须将除初始步以外的各步对应的辅助继电器(M11-M18)复位,同时将表示连续工作状态的M1复位,否则当系统从自动工作方式切换到手动工作方式,然后又返回自动工作方式时,可能会出现同时有两个活动步的异常情况,引起错误的动作。
    当机械手处于原点状态(M0为ON),在开始执行用户程序(M8002为ON)、系统处于手动
状态或回原点状态(X0或X1为ON)时,初始步对应的M1O将被置位,为进入单步、单同期和连续工作方式作好准备。如果此时M0为OFF状态,M1O将被复位,初始步为不活动步,系统不能在单步、单周期和连续工作方式下工作。
 
 
 
图6-23 公用程序
(2)手动程序 手动程序如图6-24所示,手动工作时用X14~X21对应的6个按钮控制机械手的上升、下降、左行、右行、松开和夹紧。为了保证系统的安全运行,在手动程序中设置了一些必要的联锁,例如上升与下降之间、左行与右行之间的互锁;上升、下降、左行、右行的限位;上限位开关X10的常开触点与控制左、右行的 Y2和 Y3的线圈串联,使得机械手升到最高位置才能左右移动,以防止机械手在较低位置运行时与别的物体碰撞。
 
 
 
图6-24 手动程序
(3)自动程序 如图6-25所示为机械手系统自动程序的功能表图。使用通用指令的编程方式设计出的自动程序如图6-26所示,也可采用其它编程方式编程,在此不再赘述。
 
 
 
图6-25 自动程序的功能表图
 
 
 
图6-26 自动程序
系统工作在连续、单周期(非单步)工作方式时,X2的常闭触点接通,使M2(转换允许)ON,串联在各步电路中的M2的常开触点接通,允许步与步之间的转换。
假设选择的是单周期工作方式,此时X3为ON, X1和X2的常闭触点闭合,M2为ON,允许转换。在初始步时按下起动按钮X5,在M11的电路中,M1O、X5、M2的常开触点和X12的常闭触点均接通,使M11为ON,系统进入下降步,Y1为ON,机械手下降;机械手碰到下限位开关X11时,M12变为ON,转换到夹紧步,Y4被复位,工件被夹紧;同时TO得电,2s以后TO的定时时间到,其常开触点接通,使系统进入上升步。系统将这样一步一步地往下工作,当机械手在步M18返回最左边时,X4为ON,因为此时不是连续工作方式, M1处于OFF状态,
转换条件·X12满足,系统返回并停留在初始步M10。
    在连续工作方式,X4为ON,在初始状态按下起动按钮X5,与单周期工作方式时相同,M11变为ON,机械手下降,与此同时,控制连续工作的M1为ON,往后的工作过程与单周期工作方式相同。当机械手在步M18返回最左边时,X12为ON,因为M1为ON,转换条件M7·X4满足,系统将返回步M11,反复连续地工作下去。按下停止按钮X6后,M1变为OFF,但是系统不会立即停止工作,在完成当前工作周期的全部动作后,在步M18返回最左边,左限位开关X12为ON,转换条件·X12满足,系统才返回并停留在初始步。
    如果系统处于单步工作方式,X2为ON,它的常闭触点断开,“转换允许”辅助继电器M2在一般情况下为OFF,不允许步与步之间的转换。设系统处于初始状态,M10为ON,按下起动按钮X5,M2变为ON,使M11为ON,系统进入下降步。放开起动按钮后, M2马上变为OFF。在下降步, YO的得电,机械手降到下限位开关X11处时,与YO的线圈串联的X11的常闭触点断开,使YO的线圈断电,机械手停止下降。X11的常开触点闭合后,如果没有按起动按钮,     X5和M2处于OFF状态,一直要等到按下起动按钮,M5和M2变为ON,M2的常开触点接通,转换条件X11才能使M12接通,M12得电并自保持,系统才能由下降步进入夹紧步。以后在完成某一步的操作后,都必须按一次起动按钮,系统才能进入下一步。
    在输出程序部分,X10~X13的常闭触点是为单步工作方式设置的。以下降为例,当小车碰到限位开关X11后,与下降步对应的辅助继电器M11不会马上变为OFF,如果YO的线圈不与X11的常闭触点串联,机械手不能停在下限位开关X11处,还会继续下降,这种情况下可能造成事故。
   (4)回原点程序 如图6-27所示为机械手自动回原点程序的梯形图。在回原点工作方式(X1为ON),按下回原点起动按钮X7,M3变为ON,机械手松开和上升,升到上限位开关时X10为0N,机械手左行,到左限位处时,X12变为ON,左行停止并将M3复位。这时原点条件满足,M0为ON,在公用程序中,初始步M0被置位,为进入单周期、连续和单步工作方式作好了准备。
 
 
 
图6-27 回原位程序
3.程序综合与模拟调试
由于在分部分程序设计时已经考虑各部分之间的相互关系,因此只要将公用程序(图6-23)、手动程序(图6-24)、自动程序(图6-26)和回原位程序(图6-27)按照机械手程序总体结构(图6-22)综合起来即为机械手控制系统的PLC程序。
模拟调试时各部分程序可先分别调试,然后再再进行全部程序的调试,也可直接进行全部程序的调试。
四、现场施工与联机调试(略)
 
第六节 PLC在模拟量闭环控制中的应用
 
PLC虽然是在开关量控制的基础上发展起来的工业控制装置,但为了适应现代工业控制系统的需要,其功能在不断增强,第二代PLC就能实现模拟量控制。当今第四代PLC已增加了许多模拟量处理的功能,完全能胜任各种较为复杂的模拟控制,除具有较强的PID控制外,还具有各种各样专用的过程控制模块等。近年来PLC在模拟量控制系统中的应用也越来越广泛,已成功地应用于冶金、化工、机械等行业的模拟量控制系统中。
   一、PLC模拟量闭环控制系统的基本原理
  输入信号和输出信号均为模拟量的控制系统称为模拟量控制系统。过程控制系统是指被控制量为温度、压力、流量、液位、成份等这一类慢连续变化的模拟量控制系统。
   如图6-28所示为典型的模拟量闭环控制系统结构框图。图中,虚线部分可由PLC的基本单元加上模拟量输入/输出扩展单元来承担。即由PLC自动采样来自检测元件或变送器的模拟输入信号,同时将采样的信号转换为数字量,存在指定的数据寄存器中,经过PLC运算处理后输出给执行机构去执行。
 
 
 
        图6-28 典型模拟量闭环控制系统的结构框图
因此,要将PLC应用于模拟量闭环控制系统中,首先要求PLC必须具有A/D和D/A转换功能,能对现场的模拟量信号与PLC内部的数字量信号进行转换;其次PLC必须具有数据处理能力,特别是应具有较强的算术运算功能,能根据控制算法对数据进行处理,以实现控制目的;同时还要求PLC有较高的运行速度和较大的用户程序存储容量。现在的PLC一般都有A/D和D/A模块,许多PLC还设有PID功能指令,在大、中型PLC中还配有专门的PID过程控制模块。
  二、PLC与其它模拟量控制装置的比较
  传统的模拟量控制系统主要采用电动组合仪表,常用的有DDZ-Ⅱ型和DDZ-Ⅲ型仪表。其特点是结构简单、价格便宜,但体积大、功耗大、安装复杂、通用性和灵活性较差、控制精度和稳定性较差。另外,其控制运算功能简单,不能实现复杂的过程控制。随着电子技术的发展,新型的过程控制计算机不断涌现,较为流行的有工业控制计算机(IPC)、可编程调节器(PSC)、集散控制系统(DCS)。
   1. PLC与PSC
  可编程调节器(PSC)是在DDZ-Ⅲ型仪表的基础上,采用微处理器技术发展起来的第四代仪表。它的强大功能、灵活性、可靠性、控制精度、数字通讯能力是传统的电动组合仪表无法比拟的。PSC与PLC都是智能化的工业装置,各有特色。PLC以开关量控制为主,模拟量控制为辅;而PSC则以闭环模拟量控制为主,开关量控制为辅,并能进行显示、报警和手动操作。因此,在模拟量控制系统中采用PSC更适合于各种过程控制的要求。而PLC的可靠性、灵活性、强大的开关量控制能力和通讯联网能力,在模拟量控制上也富有特色。特别在开关量、模拟量混合控制系统中更显示出其独特的优越性。
  2. PLC与DCS
    集散控制系统(DCS)是1975年问世的,它的是3C(computer、communications、control)技术的产物,它将顺序控制装置、数据采集装置、过程控制的模拟量仪表、过程监控装置有机地结合在一起,产生了满足各种不同要求的DCS。而今天的PLC加强了模拟量控制功能,多数配备了各种智能模块,具有了PID调节功能和构成网络、组成分级控制的功能,也实现了DCS所能完成的功能。到目前为止,PLC与DCS的发展越来越近。就发展趋势来看,控制系统将综合PLC和DCS各自的优势,并把两者有机地结合起来,形成一种新型的全分布式计算机控制系统。
   3. PLC与IPC
工业控制计算机(IPC)是由通用微机的推广应用而发展起来的,其硬件结构和总线的标准化程度高,品种兼容性强,软件资源丰富,特别是有实时操作系统的支持,在要求实时性强、系统模型复杂的领域占有优势。而PLC的标准化程度较差,产品不能兼容,故开发较为困难。但PLC的梯形图编程很受不熟悉计算机的电气技术人员欢迎,同时PLC专为工业现场环境设计的,可靠性非常高,被认为是不会损坏的设备,而IPC在可靠性上还不夠理想。
三、PLC的A/D和D/A模块介绍
FX2N系列中有关模拟量的特殊功能模块有:FX2N-2AD(2路模拟量输入)、FX2N-4AD(4路模拟量输入)、FX2N-8AD(8路模拟量输入)、FX2N-4AD-PT(4路热电阻直接输入)、FX2N-4AD-TC(4路热电偶直接输入)、FX2N-2DA(2路模拟量输出)、FX2N-4DA(4路模拟量输出)和FX2N-2LC(2路温度PID控制模块)等。
下面主要介绍常用的模拟量输入模块FX2N-4AD和模拟量输出模块FX2N-2DA。
(一)FX-4AD模拟量输入模块
1. FX-4AD概述
FX-4AD模拟量输入模块是FX系列专用的模拟量输入模块。该模块有4个输入通道(CH),通过输入端子变换,可以任意选择电压或电流输入状态。电压输入时,输入信号范围为DC 10~+ 10V,输入阻抗为200kΩ,分辨率为5mV;电流输入时,输入信号范围为DC -20~+20mA,输入阻抗为250Ω,分辨率为20μA
FX-4AD将接收的模拟信号转换成12位二进制的数字量,并以补码的形式存于16位数据寄存器中,数值范围是-2048~+ 2047。它的传输速率为15ms/K,综合精度为量程的1%。
FX-4AD的工作电源为DC24V,模拟量与数字量之间采用光电隔离技术,但各通道之间没有隔离。FX-4AD消耗PLC主单元或有源扩展单元5V电源槽30mA的电流。FX-4AD占用基本单元的8个映像表,即在软件上占8个I/O点数,在计算PLC的I/O时可以将这8个点作为PLC的输入点来计算。
2. FX-4AD的接线
FX-4AD的接线如图6-29所示,图中模拟输人信号采用双绞屏蔽电缆与FX-4AD连接,电缆应远离电源线或其它可能产生电气干扰的导线。如果输入有电压波动,或在外部接线中有电气干扰,可以接一个0.1μF~0.47μF(25V)的电容。如果是电流输入,应将端子V+和I+连接。FX2N-4AD接地端与PLC主单元接地端连接,如果存在过多的电气干扰,再将外壳地端FG和FX-4AD接地端连接。
 
 
 
图6-29 FX-4AD的接线图
3. FX-4AD缓冲寄存器(BFM)的分配
FX-4AD模拟量模块内部有一个数据缓冲寄存器区,它由32个16位的寄存器组成,编号为BFM#0-#31,其内容与作用如表6-1所示。数据缓冲寄存器区内容,可以通过PLC的 FROM和 TO指令来读、写。
表6-1   FX-4AD缓冲寄存器(BFM)的分配

 

BFM编号
内容
备注
#0(*)
通道初始化,用4位十六位数字H××××表示,4位数字从右至左分别控制1、2、3、4四个通道
每位数字取值范围为0~3,其含义如下:
0表示输入范围为-10V~+10V
l表示输入范围为+4mA~+20mA
2表示输入范围为-20mA~+20mA
3表示该通道关闭
缺省值为H0000
#1(*)
通道1
采样次数设置
 
采样次数是用于得到平均值,其设置范围为1~4096,缺省值为8
#2(*)
通道2
#3(*)
通道3
#4(*)
通道4
#5
通道1
平均值存放单元
根据#1~#4缓冲寄存器的采样次数,分别得出的每个通道的平均值
#6
通道2
#7
通道3
#8
通道4
#9
通道1
当前值存放单元
每个输入通道读入的当前值
#10
通道2
#11
通道3
#12
通道4
#13~#14
保留
 
#15(*)
A/D转换速度设置
设为0时:正常速度,15ms/通道(缺省值)
设为1时:高速度,6ms/通道
#16~#19
保留
 
#20(*)
复位到缺省值和预设值
缺省值为0;设为1时,所有设置将复位缺省值
#21(*)
禁止调整偏置和增益值
b1、b0位设为1、0时,禁止;
b1、b0位设为0、1时,允许(缺省值)
#22(*)
偏置、增益调整通道设置
b7与b6、b5与b4、b3与b2、b1与b0分别表示调整通道4、3、2、1的增益与偏置值
#23(*)
偏置值设置
缺省值为0000,单位为mV或μA
#24(*)
增益值设置
缺省值为5000,单位为mV或μA
#25~#28
保留
 
#29
错误信息
表示本模块的出错类型
#30
识别码(K2010)
固定为K2010,可用FROM读出识别码来确认此模块
#31
禁用
 
注:带(*)的缓冲寄存器可用TO指令写入,其它可用FROM指令读出;偏置值是指当数字输出为0时的模拟量输入值;增益值是指当数字输出为+1000时的模拟量输入值。
(二)FX-2DA模拟量输出模块
1. FX-2DA概述
FX-2DA模拟量输出模块也是FX系列专用的模拟量输出模块。该模块将12位的数字值转换成相应的模拟量输出。FX-2DA有2路输出通道,通过输出端子变换,也可任意选择电压或电流输出状态。电压输出时,输出信号范围为DC -10~+10V,可接负载阻抗为1kΩ~1MΩ,分辨率为5mV,综合精度 0.1V;电流输出时,输出信号范围为DC +4~+20mA,可接负载阻抗不大于250Ω,分辨率为20μA,综合精度0.2mA。
FX-2DA模拟量模块的工作电源为DC24V,模拟量与数字量之间采用光电隔离技术。FX-2AD模拟量模块的2个输出通道,要占用基本单元的8个映像表,即在软件上占8个I/O点数,在计算PLC的I/O时可以将这8个点作为PLC的输出点来计算。
2. FX-2DA的接线
FX-2DA的接线如图6-30所示,图中模拟输出信号采用双绞屏蔽电缆与外部执行机构连接,电缆应远离电源线或其它可能产生电气干扰的导线。当电压输出有波动或存在大量噪声干扰时,可以接一个0.1μF~0.47μF(25V)的电容。对于是电压输出,应将端子I+和VI-连接。FX2N-2DA接地端与PLC主单元接地端连接。
 
 
 
图6-30 FX-2DA的接线图
3.    FX-2DA的缓冲寄存器(BFM)分配
FX-2DA模拟量模块内部有一个数据缓冲寄存器区,它由32个16位的寄存器组成,编号为BFM#0~#31,其内容与作用如表6-2所示。数据缓冲寄存器区内容可以通过PLC的 FROM和 TO指令来读、写。
表6-2   FX-2DA缓冲寄存器(BFM)的分配

 

BFM编号
内容
备注
#0
通道初始化,用2位十六位数字H××表示,2位数字从右至左分别控制CH1、CH2两个通道
每位数字取值范围为01,其含义如下:
0表示输出范围为-10V~+10V
l表示输入范围为+4mA~+20mA
 
#1
通道1
存放输出数据
 
#2
通道2
#3~#4
保留
 
#5
输出保持与复位
缺省值为H00
H00表示CH2保持、CH1保持
H01表示CH2保持、CH1复位
H10表示CH2复位、CH1保持
Hll表示CH2复位、CH1复位
#6~#15
保留
 
#16
输出数据的当前值
8位数据存于b7~b0
#17
转换通道设置
将b0由1变成0,CH2的D/A转换开始
将b1由1变成0,CH1的D/A转换开始
将b2由1变成0,D/A转换的低8位数据保持
#18~#19
保留
 
#20
复位到缺省值和预设值
缺省值为0;设为1时,所有设置将复位缺省值
#21
禁止调整偏置和增益值
b1、b0位设为1、0时,禁止;
b1、b0位设为0、1时,允许(缺省值)
#22
偏置、增益调整通道设置
b3与b2、b1与b0分别表示调整CH2、CH1的增益与偏置值
#23
偏置值设置
缺省值为0000,单位为mV或μA
#24
增益值设置
缺省值为5000,单位为mV或μA
#25~#28
保留
 
#29
错误信息
表示本模块的出错类型
#30
识别码(K3010)
固定为K3010,可用FROM读出识别码来确认此模块
#31
禁用
 
4. FX-2DA偏置与增益的调整
FX-2DA出厂时偏置值和增益值已经设置成:数字值为0到4000,电压输出为0到10V。当 FX-2DA用作电流输出时,必须重新调整偏置值和增益值。偏置值和增益值的调节是对数字值设置实际的输出模拟值,可通过FX-2DA的容量调节器,并使用电压和电流表来完成。
增益值可设置为0~4000的任意数字值。但是,为了得到12位的最大分辨率,电压输出时,对于10V的模拟输出值,数字值调整到 4000;电流输出时,对于20mA的模拟输出值,数字值调整到4000。
偏置值也可根据需要任意进行调整。但一般情况下,电压输入时,偏置值设为OV;电流输入时,偏置值设为4mA。
调整偏置与增益时应该注意以下几个问题:
l)对通道1和通道2分别进行偏置调整和增益调整。
2)反复交替调整偏置值和增益值,直到获得稳定的数值。
3)当调整偏置、增益时,按照增益调整和偏置调整的顺序进行。
(三) 模拟量模块的编程
1.特殊功能模块的编号
模拟量输入、模拟量输出等特殊功能模块都可与PLC基本单元的扩展总线直接连接。各模块与基本单元连接时统一编号,从最靠近基本单元的模块开始,按连接顺序从0到7对各特殊功能模块进行编号。最多可连接8个特殊功能模块。如图6-31所示的连接方式,FX-4AD、FX-2DA、FX-4AD-TC的编号分别为0、1、2。
 
 
 
图6-31 特殊功能模块的连接与编号
2.特殊功能模块的读/写指令
    特殊功能模块读指令FROM(FNC78)的目标操作数[D.]为KnY,KnM,KnS,T,C,D,V和Z。 ml为特殊功能模块的编号,ml=0~7;m2为该特殊功能模块中缓冲寄存器(BFM)的编号,m2=0~32767;n是待传送数据的字数,n=l~32(16位操作)或l~16(32位操作)。如图6-32所示,当X0为ON时,将编号为0的特殊功能模块中编号从29开始的2个缓冲寄存器(BFM29、BFM30)的数据读入PLC,并存入D4开始的2个数据寄存器中(即D4、D5)。
 
 
 
图6-32 特殊功能模块读/写指令
特殊功能模块写指令TO(FNC79)的源操作数[S.]可取所有的数据类型,ml、m2、n的取值范围与FROM指令相同。如图6-23所示,当X1为ON时,将PLC基本单元中从D0指定的元件开始的1个字的数据写到编号为1的特殊功能模块中编号12开始的1个缓冲寄存器中。
当M8028为ON时,在FROM和TO指令执行过程中禁止中断,在此期间发生的中断在FROM和TO指令执行完后再执行;M8028为OFF时,指令执行过程中不禁止中断。
3.编程举例
[例1]FX2N-4AD模块在0号位置,其通道CH1和CH2作为电压输入,CH3、CH4关闭,平均值采样次数为4,数据存储器D1和D2用于接收CH1、CH2输入的平均值。程序如图6-33所示,虽然前两行程序对完成模拟量读入来说不是必需的,但它确实是有用的检查,因此推荐使用。
 
 
 
图6-33 FX2N-4AD的编程示例
[例2] FX2N-2DA模块在1号位置,其通道CH1和CH2作为电压输出,将数据存储器D1和D2的内容通过CH1、CH2输出。程序如图6-34所示,X000接通时,通道1(CH1)执行数字到模拟量的转换;X001接通时,通道2(CH2)执行数字到模拟量的转换。
 
 
 
图6-34 FX2N-2DA的编程示例
四、PLC的PID功能介绍
1. PID控制
    在工业控制中,PID控制(比例-积分-微分控制)得到了广泛的应用,这是因为PID控制具有以下优点:
    1)不需要知道被控对象的数学模型。实际上大多数工业对象准确的数学模型是无法获得的,对于这一类系统,使用PID控制可以得到比较满意的效果。据日本统计,目前PID及变型PID 约占总控制回路数的90%左右。
    2)PID控制器具有典型的结构,程序设计简单,参数调整方便。
    3)有较强的灵活性和适应性,根据被控对象的具体情况,可以采用各种PID控制的变种和改进的控制方式,如 PI、PD、带死区的PID、积分分离式PID、变速积分PID等。随着智能控制技术的发展,PID控制与模糊控制、神经网络控制等现代控制方法相结合,可以实现PID控制器的参数自整定,使PID控制器具有经久不衰的生命力。
2. PLC实现PID控制的方法
如图6-35所示为采用PLC对模拟量实行PID控制的系统结构框图。用PLC对模拟量进行PID控制时,可以采用以下几种方法:
 
 
 
图6-35 用PLC实现模拟量PID控制的系统结构框图
    1)使用PID过程控制模块。这种模块的PID控制程序是PLC生产厂家设计的,并存放在模块中,用户在使用时只需要设置一些参数,使用起来非常方便,一块模块可以控制几路甚至几十路闭环回路。但是这种模块的价格昂贵,一般在大型控制系统中使用。如三菱的A系列、Q系列PLC的PID控制模块。
    2)使用PID功能指令。现在很多中小型 PLC都提供PID控制用的功能指令,如FX2N系列PLC的PID指令。它们实际上是用于PID控制的子程序,与A/D、D/A模块一起使用,可以得到类似于使用PID过程控制模块的效果,价格却便宜得多。
3)使用自编程序实现PID闭环控制。有的PLC没有有PID过程控制模块和 PID控制指令,有时虽然有PID控制指令,但用户希望采用变型PID控制算法。在这些情况下,都需要由用户自己编制PID控制程序。
    3. FX2N的PID指令
PID指令的编号为FNC88,如图6-36所示源操作数[S1]、[S2]、[S3]和目标操作数[D]均为数据寄存器D,16位指令,占9个程序步。[S1]和[S2]分别用来存放给定值SV和当前测量到的反馈值PV,[S3]~[S3]+6用来存放控制参数的值,运算结果MV存放在[D]中。源操作数[S3]占用从[S3]开始的25个数据寄存器。
 
 
 
图6-36    PID指令
 
PID指令是用来调用PID运算程序,在PID运算开始之前,应使用MOV指令将参数(见表6-3)设定值预先写入对应的数据寄存器中。如果使用有断电保持功能的数据寄存器,不需要重复写入。如果目标操作数[D]有断电保持功能,应使用初始化脉冲M8002的常开触点将其复位。
表6-3 PID控制参数及设定

 

源操作数
  
设定范围或说明
   
[S3]
采样周期(Ts)
1~32767ms
不能小于扫描周期
[S3]+ 1
动作方向(ACT)
Bit0: 0为正作用、1为反作用
Bit1: 0为无输入变化量报警
1为有输入变化量报警
Bit2: 0为无输出变化量报警
1为有输出变化量报警
Bit3 ~ Bit15不用
[S3]+ 2
输入滤波常数(L)
0~99(%)
对反馈量的一阶惯性数字滤波环节
[S3]+ 3
比例增益(K p
1~32767(%)
 
[S3]+ 4
积分时间(T I
0~32767(×100ms)
0∝作同样处理
[S3]+ 5
微分增益 (K D)
0~100(%)
 
[S3]+ 6
微分时间(T D
0~32767(×10ms)
0为无微分
[S3]+ 7
~ [S3]+ 19
PID运算占用
[S3]+ 20
输入变化量(增方)警报设定值
0~32767
由用户设定ACT([S3]+ 1)为K2~K7时有效,即ACT的Bit1 和Bit2至少有一个为1时才有效;
当ACT的Bit1 和Bit2都为0时,[S3]+ 20 ~[S3]+ 24无效
[S3]+ 21
输入变化量(减方)警报设定值
0~32767
[S3]+ 22
输出变化量(增方)警报设定值
0~32767
[S3]+ 23
输出变化量(减方)警报设定值
0~32767
[S3]+ 24
警报输出
Bit0: 输入变化量(增方)超出
Bit1: 输入变化量(减方)超出
Bit2: 输出变化量(增方)超出
Bit3: 输出变化量(减方)超出
PID指令可以同时多次使用,但是用于运算的[S3]、[D]的数据寄存器元件号不能重复。
    PID指令可以在定时中断、子程序、步进指令和转移指令内使用,但是应将[S3]+7清零(采用脉冲执行的MOV指令)之后才能使用。
    控制参数的设定和 PID运算中的数据出现错误时,“运算错误”标志M8067为 ON,错误代码存放在D8067中。
    PID指令采用增量式PID算法,控制算法中还综合使用了反馈量一阶惯性数字滤波、不完全微分和反馈量微分等措施,使该指令比普通的PID算法具有更好的控制效果。
    PID控制是根据“动作方向”([S3]+1)的设定内容,进行正作用或反作用的PID运算。PID运算公式如下:
 
    以上公式中:MV是本次和上一次采样时PID输出量的差值,MVn是本次的PID输出量;EVn和 EVn-1分别是本次和上一次采样时的误差,SV为设定值;PVn是本次采样的反馈值,PVnf、PVnf-1和PVnf-2分别是本次、前一次和前两次滤波后的反馈值,L是惯性数字滤波的系数;Dn和Dn-l分别是本次和上一次采样时的微分部分;K p是比例增益,T S是采样周期,T IT D分别是积分时间和微分时间,αD是不完全微分的滤波时间常数与微分时间TD的比值。
    4.PID参数的整定
    PID控制器有4个主要的参数K pT IT DT S需整定,无论哪一个参数选择得不合适都会影响控制效果。在整定参数时应把握住PID参数与系统动态、静态性能之间的关系。
    在P(比例)、I(积分)、D(微分)这三种控制作用中,比例部分与误差信号在时间上是一致的,只要误差一出现,比例部分就能及时地产生与误差成正比的调节作用,具有调节及时的特点。比例系数K p越大,比例调节作用越强,系统的稳态精度越高;但是对于大多数系统,K p过大会使系统的输出量振荡加剧,稳定性降低。
    积分作用与当前误差的大小和误差的历史情况都有关系,只要误差不为零,控制器的输出就会因积分作用而不断变化,一直要到误差消失,系统处于稳定状态时,积分部分才不再变化。因此,积分部分可以消除稳态误差,提高控制精度,但是积分作用的动作缓慢,可能给系统的动态稳定性带来不良影响。积分时间常数T I增大时,积分作用减弱,系统的动态性能(稳定性)可能有所改善,但是消除稳态误差的速度减慢。
    微分部分是根据误差变化的速度,提前给出较大的调节作用。微分部分反映了系统变化的趋势,它较比例调节更为及时,所以微分部分具有超前和预测的特点。微分时间常数T D增大时,超调量减小,动态性能得到改善,但是抑制高频干扰的能力下降。
    选取采样周期T S时,应使它远远小于系统阶跃响应的纯滞后时间或上升时间。为使采样值能及时反映模拟量的变化,T S越小越好。但是T S太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么变化,所以也不宜将T S取得过小。
 
 
第七节 提高PLC控制系统可靠性的措施
   
虽然PLC具有很高的可靠性,并且有很强的抗干扰能力,但在过于恶劣的环境或安装使用不当等情况下,都有可能引起PLC内部信息的破坏而导致控制混乱,甚至造成内部元件损坏。为了提高PLC系统运行的可靠性,使用时应注意以下几个方面的问题。
一、适合的工作环境
1.环境温度适宜
各生产厂家对PLC的环境温度都有一定的规定。通常PLC允许的环境温度约在0~55°C。因此,安装时不要把发热量大的元件放在PLC的下方;PLC四周要有足够的通风散热空间;不要把PLC安装在阳光直接照射或离暖气、加热器、大功率电源等发热器件很近的场所;安装PLC的控制柜最好有通风的百叶窗,如果控制柜温度太高,应该在柜内安装风扇强迫通风。
2.环境湿度适宜
PLC工作环境的空气相对湿度一般要求小于85%,以保证PLC的绝缘性能。湿度太大也会影响模拟量输入/输出装置的精度。因此,不能将PLC安装在结露、雨淋的场所。
3.注意环境污染
不宜把PLC安装在有大量污染物(如灰尘、油烟、铁粉等)、腐烛性气体和可燃性气体的场所,尤其是有腐蚀性气体的地方,易造成元件及印刷线路板的腐蚀。如果只能安装在这种场所,在温度允许的条件下,可以将PLC封闭;或将PLC安装在密闭性较高的控制室内,并安装空气净化装置。
4.远离振动和冲击源
安装PLC的控制柜应当远离有强烈振动和冲击场所,尤其是连续、频繁的振动。必要时可以采取相应措施来减轻振动和冲击的影响,以免造成接线或插件的松动。
5远离强干扰源
PLC应远离强干扰源,如大功率晶闸管装置、高频设备和大型动力设备等,同时PLC还应该远离强电磁场和强放射源,以及易产生强静电的地方。  
二、合理的安装与布线
   1. 注意电源安装
   电源是干扰进入PLC的主要途径。PLC系统的电源有两类:外部电源和内部电源。
   外部电源是用来驱动PLC输出设备(负载)和提供输入信号的,又称用户电源,同一台PLC的外部电源可能有多规格。外部电源的容量与性能由输出设备和PLC的输入电路决定。由于PLC的I/O电路都具有滤波、隔离功能,所以外部电源对PLC性能影响不大。因此,对外部电源的要求不高。
  内部电源是PLC的工作电源,即PLC内部电路的工作电源。它的性能好坏直接影响到PLC的可靠性。因此,为了保证PLC的正常工作,对内部电源有较高的要求。一般PLC的内部电源都采用开关式稳压电源或原边带低通滤波器的稳压电源。
  在干扰较强或可靠性要求较高的场合,应该用带屏蔽层的隔离变压器,对PLC系统供电。还可以在隔离变压器二次侧串接LC滤波电路。同时,在安装时还应注意以下问题:
   1) 隔离变压器与PLC和I/O电源之间最好采用双绞线连接,以控制串模干扰;
    2) 系统的动力线应足够粗,以降低大容量设备起动时引起的线路压降;
3) PLC输入电路用外接直流电源时,最好采用稳压电源,以保证正确的输入信号。否则可能使PLC接收到错误的信号。
2. 远离高压
PLC不能在高压电器和高压电源线附近安装,更不能与高压电器安装在同一个控制柜内。在柜内PLC应远离高压电源线,二者间距离应大于200mm
3. 合理的布线
   1) I/O线、动力线及其它控制线应分开走线,尽量不要在同一线槽中布线。
   2) 交流线与直流线、输入线与输出线最好分开走线。
   3) 开关量与模拟量的I/O线最好分开走线,对于传送模拟量信号的I/O线最好用屏蔽线,且屏蔽线的屏敝层应一端接地。
4) PLC的基本单元与扩展单元之间电缆传送的信号小、频率高,很容易受干扰,不能与其它的连线敷埋在同一线槽内。
5)PLC的I/O回路配线,必须使用压接端子或单股线,不宜用多股绞合线直接与PLC的接线端于连接,否则容易出现火花。
 6) PLC安装在同一控制柜内,虽不是由PLC控制的感性元件,也应并联RC或二极管消弧电路。
三、正确的接地
  良好的接地是PLC安全可靠运行的重要条件。为了抑制干扰,PLC一般最好单独接地,与其它设备分别使用各自的接地装置,如图6-37a所示;也可以采用公共接地,如图6-37b所示;但禁止使用如图6-37c所示的串联接地方式,因为这种接地方式会产生PLC与设备之间的电位差。
 
 
 
              图6-37 PLC的接地
a)分别接地   b)公共按地   c)串联接地
PLC的接地线应尽量短,使接地点尽量靠近PLC。同时,接地电阻要小于100Ω接地线的截面应大于2mm2
另外,PLC的CPU单元必须接地,若使用了I/O扩展单元等,则CPU单元应与它们具有共同的接地体,而且从任一单元的保护接地端到地的电阻都不能大于100Ω
四、必须的安全保护环节
   1.短路保护
PLC输出设备短路时,为了避免PLC内部输出元件损坏,应该在PLC外部输出回路中装上熔断器,进行短路保护。最好在每个负载的回路中都装上熔断器。
    2. 互锁与联锁措施
    除在程序中保证电路的互锁关系,PLC外部接线中还应该采取硬件的互锁措施,以确保系统安全可靠地运行,如电动机正、反转控制,要利用接触器KM1、KM2常闭触点在PLC外部进行互锁。在不同电机或电器之间有联锁要求时,最好也在PLC外部进行硬件联锁。采用PLC外部的硬件进行互锁与联锁,这是PLC控制系统中常用的做法。
    3.失压保护与紧急停车措施
PLC外部负载的供电线路应具有失压保护措施,当临时停电再恢复供电时,不按下“启动”按钮PLC的外部负载就不能自行启动。这种接线方法的另一个作用是,当特殊情况下需要紧急停机时,按下“停止”按钮就可以切断负载电源,而与PLC毫无关系。
五、必要的软件措施
    有时硬件措施不一定完全消除干扰的影响,采用一定的软件措施加以配合,对提高PLC控制系统的抗干扰能力和可靠性起到很好的作用。
1. 消除开关量输入信号抖动
 在实际应用中,有些开关输入信号接通时,由于外界的干扰而出现时通时断的“抖动”现象。这种现象在继电器系统中由于继电器的电磁惯性一般不会造成什么影响,但在PLC系统中,由于PLC扫描工作的速度快,扫描周期比实际继电器的动作时间短得多,所以抖动信号就可能被PLC检测到,从而造成错误的结果。因此,必须对某些“抖动”信号进行处理,以保证系统正常工作。
 如图6-38a所示,输入X0抖动会引起输出Y0发生抖动,可采用计数器或定时器,经过适当编程,以消除这种干扰。
如图6-38b所示为消除输入信号抖动的梯形图程序。当抖动干扰X0断开时间间隔Δt<K×0.1S,计数器C0不会动作,输出继电器Y0保持接通,干扰不会影响正常工作;只有当X0抖动断开时间Δt≥K×0.1S时,计数器C0计满K次动作,C0常闭断开,输出继电器Y0才断开。K为计数常数,实际调试时可根据干扰情况而定。
 
 
 
图6-38 输入信号抖动的影响及消除
    a)抖动现象的影响     b)消除抖动的方法
    2.故障的检测与诊断
    PLC的可靠性很高且本身有很完善的自诊断功能,如果PLC出现故障,借助自诊断程序可以方便地找到故障的原因,排除后就可以恢复正常工作。
    大量的工程实践表明,PLC外部输入、输出设备的故障率远远高于PLC本身的故障率,而这些设备出现故障后,PLC一般不能觉察出来,可能使故障扩大,直至强电保护装置动作后才停机,有时甚至会造成设备和人身事故。停机后,查找故障也要花费很多时间。为了及时发现故障,在没有酿成事故之前使PLC自动停机和报警,也为了方便查找故障,提高维修效率,可用PLC程序实现故障的自诊断和自处理。
    现代的PLC拥有大量的软件资源,如FX2N系列PLC有几千点辅助继电器、几百点定时器和计数器,有相当大的裕量,可以把这些资源利用起来,用于故障检测。
    (1)超时检测 机械设备在各工步的动作所需的时间一般是不变的,即使变化也不会太大,因此可以以这些时间为参考,在PLC发出输出信号,相应的外部执行机构开始动作时启动一个定时器定时,定时器的设定值比正常情况下该动作的持续时间长20%左右。例如设某执行机构(如电动机)在正常情况下运行50s后,它驱动的部件使限位开关动作,发出动作结束信号。若该执行机构的动作时间超过 60s(即对应定时器的设定时间),PLC还没有接收到动作结束信号,定时器延时接通的常开触点发出故障信号,该信号停止正常的循环程序,启动报警和故障显示程序,使操作人员和维修人员能迅速判别故障的种类,及时采取排除故障的措施。
    (2)逻辑错误检测 在系统正常运行时,PLC的输入、输出信号和内部的信号(如辅助继电器的状态)相互之间存在着确定的关系,如出现异常的逻辑信号,则说明出现了故障。因此,可以编制一些常见故障的异常逻辑关系,一旦异常逻辑关系为ON状态,就应按故障处理。例如某机械运动过程中先后有两个限位开关动作,这两个信号不会同时为ON状态,若它们同时为ON,说明至少有一个限位开关被卡死,应停机进行处理。
3.消除预知干扰
某些干扰是可以预知的,如PLC的输出命令使执行机构(如大功率电动机、电磁铁)动作,常常会伴随产生火花、电弧等干扰信号,它们产生的干扰信号可能使PLC接收错误的信息。在容易产生这些干扰的时间内,可用软件封锁PLC的某些输入信号,在干扰易发期过去后,再取消封锁。
六、采用冗余系统或热备用系统
某些控制系统(如化工、造纸、冶金、核电站等)要求有极高的可靠性,如果控制系统出现故障,由此引起停产或设备损坏将造成极大的经济损失。因此,仅仅通过提高PLC控制系统的自身可靠性是满足不了要求。在这种要求极高可靠性的大型系统中,常采用冗余系统或热备用系统来有效地解决上述问题。
1.冗余系统
所谓冗余系统是指系统中有多余的部分,没有它系统照样工作,但在系统出现故障时,这多余的部分能立即替代故障部分而使系统继续正常运行。冗余系统一般是在控制系统中最重要的部分(如CPU模块)由两套相同的硬件组成,当某一套出现故障立即由另一套来控制。是否使用两套相同的I/O模块,取决于系统对可靠性的要求程度。
如图6-39a所示,两套CPU模块使用相同的程序并行工作,其中一套为主CPU模块,一块为备用CPU模块。在系统正常运行时,备用CPU模块的输出被禁止,由主CPU模块来控制系统的工作。同时,主CPU模块还不断通过冗余处理单元(RPU)同步地对备用CPU模块的I/O映像寄存器和其它寄存器进行刷新。当主CPU模块发出故障信息后,RPU13个扫描周期内将控制功能切换到备用CPUI/O系统的切换也是由RPU来完成。
 
 
 
图6-39 冗余系统与执备用系统
a)冗余系统    b)热备用系统
    2.热备用系统
热备用系统的结构较冗余系统简单,虽然也有两个CPU模块在同时运行一个程序,但没有冗余处理单元RPU系统两个CPU模块的切换,是由主CPU模块通过通信口与备用CPU模块进行通信来完成的。如图6-39b所示,两套CPU通过通讯接口连在一起。当系统出现故障时,由主CPU通知备用CPU,并实现切换,其切换过程一般较慢。

    

 

第八节 PLC控制系统的维护和故障诊断
 
 一、PLC控制系统的维护
 PLC的可靠性很高,但环境的影响及内部元件的老化等因素,也会造成PLC不能正常工作。如果等到PLC报警或故障发生后再去检查、修理,总归是被动的。如果能经常定期地做好维护、检修,就可以做到系统始终工作在最佳状态下。因此,定期检修与做好日常维护是非常重要的。一般情况下检修时间以每6个月至一年1次为宜,当外部环境条件较差时,可根据具体情况缩短检修间隔时间。
 PLC日常维护检修的一般内容如表6-4所示。
表6-4 PLC维护检修项目、内容
序号   检修项目                  
  1   供电电源       在电源端子处测电压变化是否在标准范围内
                        环境温度(控制柜内)是否在规定范围
  2    外部环境       环境湿度(控制柜内)是否在规定范围
                         积尘情况(一般不能积尘)
 3     输入输出电源    在输入、输出端子处测电压变化是否在标准范围内
                          各单元是否可靠固定、有无松动
 4    安装状态       连接电缆的连接器是否完全插入旋紧
                       外部配件的螺钉是否松动
 5    寿命元件         锂电池寿命等
[1]二、PLC的故障诊断
任何PLC都具有自诊断功能,当PLC异常时应该充分利用其自诊断功能以分析故障原因。一般当PLC发生异常时,首先请检查电源电压、PLC及I/O端子的螺丝和接插件是否松动,以及有无其他异常。然后再根据PLC基本单元上设置的各种LED的指示灯状况,以检查PLC自身和外部有无异常。
下面以FX系列PLC为例,来说明根据LED指示灯状况以诊断PLC故障原因的方法。
1.电源指示([POWER]LED指示)
     当向PLC基本单元供电时,基本单元表面上设置的[POWER]LED指示灯会亮。如果电源合上但[POWER]LED指示灯不亮,请确认电源接线。另外,若同一电源有驱动传感器等时,请确认有无负载短路或过电流。若不是上述原因,则可能是PLC内混入导电性异物或其他异常情况,使基本单元内的保险丝熔断,此时可通过更换保险丝来解决。
    2.出错指示([EPROR]LED闪烁)
    当程序语法错误(如忘记设定定时器或计数器的常数等),或有异常噪音、导电性异物混入等原因而引起程序内存的内容变化时,[EPROR]LED会闪烁,PLC处于STOP状态,同时输出全部变为OFF。在这种情况下,应检查程序是否有错,检查有无导电性异物混入和高强度噪音源。
     发生错误时,8009、8060~8068其中之一的值被写入特殊数据寄存器D8004中,假设这个写入D8004中内容是8064,则通过查看D8064的内容便可知道出错代码。与出错代码相对应的 实际出错内容参见PLC使用手册的错误代码表。
    3.出错指示([EPROR]LED灯亮)
    由于PLC内部混入导电性异物或受外部异常噪音的影响,导致CPU失控或运算周期超过200ms,则WDT出错,[EPROR]LED灯亮,PLC处于STOP,同时输出全部都变为OFF。此时可进行断电复位,若PLC恢复正常,请检查一下有无异常噪音发生源和导电性异物混入的情况。另外,请检查PLC的接地是否符合要求。
检查过程如果出现[EPROR]LED灯亮闪烁的变化,请进行程序检查。如果[EPROR]LED依然一直保持灯亮状态时,请确认一下程序运算周期是否过长(监视D8012可知最大扫描时间)。
如果进行了全部的检查之后,[EPROR]LED 的灯亮状态仍不能解除,应考虑PLC内部发生了某种故障,请与厂商联系。
4.输入指示
不管输入单元的LED灯亮还是灭,请检查输入信号开关是否确实在ON或OFF状态。如果输入开关的额定电流容量过大或由于油侵入等原因,容易产生接触不良。当输入开关与LED灯亮用电阻并联时,即使输入开关OFF但并联电路仍导通,仍可对PLC进行输入。如果使用光传感器等输入设备,由于发光/受光部位粘有污垢等,引起灵敏度变化,有可能不能完全进入“ON”状态。在比PLC运算周期短的时间内,不能接收到ON和OFF的输入。如果在输入端子上外加不同的电压时,会损坏输入回路。
5.输出指示
不管输出单元的LED灯亮还是灭,如果负载不能进行ON或OFF时,主要是由于过载、负载短路或容量性负载的冲击电流等,引起继电器输出接点粘合,或接点接触面不好导致接触不良。
 
习 题
 
    6-1 PLC控制系统与继电器控制系统的设计过程相比,有何特点?
    6-2 在什么情况下需要将PLC的用户程序固化到EPROM中?
    6-3 选择PLC的主要依据是什么?
    6-4 PLC的开关量输入单元一般有哪几种输入方式?它们分别适用于什么场合?
    6-5 PLC的开关量输出单元一般有哪几种输出方式?各有什么特点?
    6-6 PLC输入输出有哪几种接线方式?为什么?
    6-7 某系统有自动和手动两种工作方式。现场的输入设备有:6个行程开关(SQ1-SQ6)和2个按钮(SB1-SB2)仅供自动时使用;6个按钮(SB3-SB8)仅供手动时使用;3个行程开关(SQ7-SQ9)为自动、手动共用。是否可以使用一台输入只有12点PLC?若可以,试画出PLC的输入接线图。
    6-8 用一个按钮(X1)来控制三个输出(Y1、Y2、Y3)。当Y1、Y2、Y3都为OFF时,按一下X1,Y1为ON,再按一下X1,Y1、Y2为ON,再按一下X1,Y1、Y2、Y3都为ON,再按X1,回到Y1、Y2、Y3都为OFF状态。再操作X1,输出又按以上顺序动作。试用两种不同的程序设计方法设计其梯形图程序。
    6-9 用定时器设计一个消除输入信号抖动的梯形图程序。
    6-10 PLC控制系统安装布线时应注意哪些问题?
6-11 如何提高PLC控制系统的可靠性?
6-12 设计一个可用于四支比赛队伍的抢答器。系统至少需要4个抢答按钮、1 个复位按钮和4个指示灯。试试画出PLC的I/O接线图、设计出梯形图并加以调试。
6-13 设计一个十字路口交通指挥信号灯控制系统,其示意图如图6-40所示。具体控制要求是:设置一个控制开关,当它闭合时,信号灯系统开始工作;当它断开时,信号灯全部熄灭。信号灯工作循环如图6-40b所示。试画出PLC的I/O接线图、设计出梯形图并加以调试。
 
 
 
图6-40 题6-13图
a)示意图    b)时序图
    4-14 设计一个汽车库自动门控制系统,其示意图如图6-41所示。具体控制要求是:当汽车到达车库门前,超声波开关接收到来车的信号,门电动机正转,门上升,当门升到顶点碰到上限开关,门停止上升,汽车驶入车库后,光电开关发出信号,门电动机反转,门下降,当下降到下限开关后门电动机停止。试画出画出PLC的I/O接线图、设计出梯形图程序并加以调试。
 
 
 
图6-41   题6-14图
4-15 如图6-42所示为一台机械手用来分选大、小球的工作示意图。系统设有手动、单周期、单步、连续和回原点5种工作方式,机械手在最上面、最左边且电磁吸盘断电时,称为系统处于原点状态(或称初始状态)。手动时应设有左行、右行、上升、下降、吸合、释放六个操作按钮;回原点工作方式时应设有回原点起动按钮;单周期、单步、连续工作方式时应设有起动和停止按钮。系统还应该设有起动和急停按钮。图中SQ为用来检测大小球的光电开关,SQ为ON时为小球,SQ为OFF时为大球。
根据以上要要求,试为该大、小球分选系统设计一套PLC控制系统。
 
 
 
图6-42   题6-15图
文章录入:qszx_qians 责任编辑:qszx_qians
点击数: 【字体: 收藏 打印文章 查看评论
相关信息
    没有关键字相关信息!

上一篇:数字门电路资料[ 12-07 ]

下一篇:没有了!

观后心情
感动 同情 无聊 愤怒 搞笑 难过 高兴 路过